Atlas of Endoscopic Neurosurgery of the Third Ventricle: Basic Principles for Ventricular Approaches and Essential Intraoperative Anatomy

Atlas of Endoscopic Neurosurgery of the Third Ventricle: Basic Principles for Ventricular Approaches and Essential Intraoperative Anatomy

Atlas of Endoscopic Neurosurgery of the Third Ventricle: Basic Principles for Ventricular Approaches and Essential Intraoperative Anatomy

By Roberto Alexandre Dezena

List Price: $199.00

ADD TO SHOPPING CART

This book describes in practical terms the endoscopic neurosurgery of the third ventricle and surrounding structures, emphasizing aspects of intraoperative endoscopic anatomy and ventricular approaches for main diseases, complemented by CT / MRI images. It is divided in two parts: Part I describes the evolution of the description of the ventricular system and traditional ventricular anatomy, besides the endoscopic neurosurgery evolution and current concepts, with images and schematic drawings, while Part II presents a collection of intraoperative images of endoscopic procedures, focusing in anatomy and main pathologies, complemented by schemes of the surgical approaches and CT / MRI images.

The Atlas of Endoscopic Neurosurgery of the Third Ventricle offers a revealing guide to the subject, addressing the needs of medical students, neuroscientists, neurologists and especially neurosurgeons.


Product Details

  • Original language: English
  • Number of items: 1
  • Dimensions: 11.41″ h x .88″ w x 8.51″ l,
  • Binding: Hardcover
  • 271 pages

About the Author

Roberto Alexandre Dezena: MD from the Federal University of Triângulo Mineiro, Uberaba, Brazil (2003), completed his residency training in Neurosurgery at Santa Casa de Misericórdia de Ribeirão Preto, Brazil (2009), achieved his PhD in Neurosurgery at Ribeirão Preto Medical School of University of São Paulo, Brazil (2011), and his Postdoctoral Fellowship at Federal University of Triângulo Mineiro, Uberaba, Brazil (2014). In Brazil, is Full Member of Brazilian Society of Neurosurgery (SBN) and Brazilian Academy of Neurosurgery (ABNc). Internationally, is Fellow of World Federation of Neurosurgical Societes (WFNS), Active Member of both International Society for Pediatric Neurosurgery (ISPN) and International Federation of Neuroendoscopy (IFNE), and Full Member of both Latin American Federation of Neurosurgery Societes (FLANC) and Latin American Group of Studies in Neuroendoscopy (GLEN). Fellow of University of Tübingen, Germany, and University of Hiroshima, Japan. Currently is Chief of Division of Neurosurgery at Clinics Hospital, Neurosurgery Residency Director, and Professor of Postgraduate Program in Health Sciences and Postgraduate Program in Applied Biosciences, all in Federal University of Triângulo Mineiro, Uberaba, Brazil. Main neurosurgical areas in vascular and neuro-oncology microneurosurgery, endoscopic neurosurgery, pediatric neurosurgery, spinal surgery and neurotrauma. Main research areas in endoscopic neurosurgery, pediatric neurosurgery, neurotrauma, experimental cerebral ischemia and basic neurosciences. Editorial Board Member of International Journal of Anesthesiology Research (Phaps), Journal of Neurology and Stroke (Medcrave), EC Neurology (EC), and International Journal of Pediatrics and Children Health (Savvy). Reviewer of several online international scientific journals, highlighting World Neurosurgery (WFNS), Neurological Research (Maney) and Journal of Neurosurgical Sciences (Minerva).

 

Update: Cryptococcal meningitis

Cryptococcal meningitis

Cryptococcosis is a fungal infection caused by Cryptococcus spp. that enters the body via inhalation, which mainly invades the lungs and central nervous system.

Two types of fungus can cause cryptococcal meningitis (CM). They are called Cryptococcus neoformans (C. neoformans) and Cryptococcus gattii (C.gattii). This disease is rare in healthy people. CM is more common in people who have compromised immune systems, such as people who have AIDS.

Cryptococcal meningitis may have long-term morbidity and requires a permanent cerebrospinal fluid shunt.

see Cryptococcus neoformans ventriculoperitoneal shunt infection.

see Cryptococcal choroid plexitis.

Clinical features

Cryptococcal meningitis are usually subacute or chronic in nature. HIV-infected patients may have minimal or nonspecific symptoms. Common symptoms are as follows:

Headache

Confusion

Lethargy

Obtundation

Coma

Normal or mildly elevated temperature

Nausea and vomiting (with increased intracranial pressure)

Fever and stiff neck (with an aggressive inflammatory response; less common)

Blurred vision, photophobia, and diplopia

Hearing defects, seizures, ataxia, aphasia, and choreoathetoid movements

After lung and CNS infection, the next most commonly involved organs in disseminated cryptococcosis include the skin, the prostate, and the medullary cavity of bones. Cutaneous manifestations (10-15% of cases) are as follows:

Papules, pustules, nodules, ulcers, or draining sinuses

Umbilicated papules in patients with AIDS

Cellulitis with necrotizing vasculitis in organ transplant recipients

Other less common forms of cryptococcosis include the following:

Optic neuritis or endophthalmitis

Myocarditis

Chorioretinitis

Hepatitis

Peritonitis

Renal abscess

Myositis

Adrenal involvement.

Diagnosis

The workup in patients with suspected cryptococcosis includes the following:

Cutaneous lesions: Biopsy with fungal stains and cultures

Blood: Fungal culture, cryptococcal serology, and cryptococcal antigen testing

Cerebrospinal fluid: India ink smear, fungal culture, and cryptococcal antigen testing

Urine and sputum cultures, even if renal or pulmonary disease is not clinically evident

In AIDS patients with cryptococcal pneumonia, culture of bronchoalveolar lavage washings

With possible CNS cryptococcosis, especially in patients who present with focal neurologic deficits or a history compatible with slowly progressive meningitis, consider obtaining a computed tomography or magnetic resonance imaging scan of the brain prior to performing a lumbar puncture. If a mass lesion is identified, do not perform a lumbar puncture to obtain spinal fluid; rather, consult a neurosurgeon for an alternative procedure.

With pulmonary cryptococcosis, radiographic findings in patients who are asymptomatic and immunocompetent may include the following:

Patchy pneumonitis

Granulomas ranging from 2-7 cm

Miliary disease similar to that in tuberculosis.

Treatment

Treatment of cryptococcal meningitis consists of three phases: induction, consolidation, and maintenance. Effective induction therapy requires potent fungicidal drugs (amphotericin B and flucytosine), which are often unavailable in low-resource, high-endemicity settings. As a consequence, mortality is unacceptably high. Wider access to effective treatment is urgently required to improve outcomes. For human immunodeficiency virus-infected patients, judicious management of asymptomatic cryptococcal antigenemia and appropriately timed introduction of antiretroviral therapy are important 1).

Case series

2017

A study aimed to evaluate the risk factors and create a predictive model for permanent shunt treatment in cryptococcal meningitis patients. This was a retrospective analytical study conducted at Khon Kaen University. The study period was from January 2005 to December 2015.

They enrolled all adult patients diagnosed with cryptococcal meningitis. Risk factors predictive for permanent shunting treatment were analyzed by multivariate logistic regression analysis. There were 341 patients diagnosed with cryptococcal meningitis. Of those, 64 patients (18.7%) were treated with permanent shunts. There were three independent factors associated with permanent shunt treatment. The presence of hydrocephalus had the highest adjusted OR at 56.77. The resulting predictive model for permanent shunt treatment (y) is (-3.85) + (4.04 × hydrocephalus) + (2.13 × initial CSF opening pressure (OP) > 25 cm H2O) + (1.87 × non-HIV). In conclusion, non-HIV status, initial CSF OP greater than or equal to 25 cm H2O, and the presence of hydrocephalus are indicators of the future necessity for permanent shunt therapy 2).

2014

In Japan, most cases of cryptococcosis are caused by Cryptococcus neoformans(C. neoformans). Until now, only three cases which the infectious agent was Cryptococcus neoformans var. gattii(C. gattii)have been reported. As compared with cryptococcosis caused by C. neoformans, which is often observed in immunocompromised hosts, cryptococcosis caused by C. gattii occurs predominantly in immunocompetent hosts and is resistant to antifungal drugs. Here, we report a case of refractory cerebral cryptococcoma that was successfully treated by surgical resection of the lesions. A 33-year-old man with no medical history complained of headache, hearing disturbance, and irritability. Pulmonary CT showed a nodular lesion in the left lung. Cerebrospinal fluid examination with Indian ink indicated cryptococcal meningitis, and PCR confirmed infection with C. gattii. C. gattii is usually seen in the tropics and subtropics. Since this patient imported trees and soils from abroad to feed stag beetles, parasite or fungal infection was, as such, suspected. Although he received 2 years of intravenous and intraventricular antifungal treatment, brain cryptococcomas were formed and gradually increased. Because of the refractory clinical course, the patient underwent surgical resection of the cerebral lesions. With continuation of antifungal drugs for 6 months after the surgeries, Cryptococcus could not be cultured from cerebrospinal fluid, and no lesions were seen on MR images. If cerebral cryptococcosis responds poorly to antifungal agents, surgical treatment of the cerebral lesion should be considered. 3).

1)

Sloan DJ, Parris V. Cryptococcal meningitis: epidemiology and therapeutic options. Clin Epidemiol. 2014 May 13;6:169-82. doi: 10.2147/CLEP.S38850. eCollection 2014. Review. PubMed PMID: 24872723; PubMed Central PMCID: PMC4026566.
2)

Phusoongnern W, Anunnatsiri S, Sawanyawisuth K, Kitkhuandee A. Predictive Model for Permanent Shunting in Cryptococcal meningitis. Am J Trop Med Hyg. 2017 Aug 14. doi: 10.4269/ajtmh.17-0177. [Epub ahead of print] PubMed PMID: 28820702.
3)

Inada T, Imamura H, Kawamoto M, Sekiya H, Imai Y, Tani S, Adachi H, Ishikawa T, Mineharu Y, Asai K, Ikeda H, Ogura T, Shibata T, Beppu M, Agawa Y, Shimizu K, Sakai N, Kikuchi H. [Cryptococcus Neoformans Var. Gattii meningoencephalitis with cryptococcoma in an immunocompetent patient successfully treated by surgical resection]. No Shinkei Geka. 2014 Feb;42(2):123-7. Japanese. PubMed PMID: 24501185.

Update: Thromboprophylaxis in Spinal Surgery

Thromboprophylaxis in Spinal Surgery

Published institutional practices for Venous thromboembolic prophylaxis are highly variable and there are no universally accepted guidelines.

While the incidence of deep vein thrombosis (DVT) and pulmonary embolism (PE) was relatively low regardless of prophylaxis type, the true incidence is difficult to determine given the heterogeneous nature of the small number of studies available in the literature.

Findings suggest there may be a role for chemoprophylaxis given the relatively high rate of fatal PE. Future studies are needed to determine which patient population would benefit most from chemoprophylaxis 1)2).

Case series

2014

An institutional review board-approved retrospective review of outcomes in patients undergoing spine surgery 2 years before protocol implementation (representing the preprotocol group) and of outcomes in patients treated 2 years thereafter (the postprotocol group) was conducted. Inclusion criteria were that patients were 18 years or older and had been admitted for 1 or more days. Before 2008 (preprotocol), VTE prophylaxis was variable and provider dependent without any uniform protocol. Since 2008 (postprotocol), a new VTE-prophylaxis protocol was administered, starting either preoperatively or on the same day of surgery and continuing throughout hospitalization. The new protocol consisted of 5000 U heparin administered subcutaneously 3 times daily, except in patients older than 75 years or weighing less than 50 kg, who received this dose twice daily. All patients also received sequential compression device. The incidence of VTE in the 2 protocol phases was identified by codes of the International Classification of Diseases, Ninth Revision (ICD-9) codes for deep vein thrombosis (DVT) and pulmonary embolus (PE). Bleeding complications arising from anticoagulation treatments were evaluated by the Current Procedural Terminology (CPT) code for postoperative spinal epidural hematoma (EDH) requiring evacuation.

In total, 941 patients in the preprotocol group met the inclusion criteria: 25 had DVT (2.7%), 6 had PE (0.6%), and 6 had postoperative EDH (0.6%). In the postprotocol group, 992 patients met the criteria: 10 had DVT (1.0%), 5 had PE (0.5%), and 4 had postoperative EDH (0.4%). This reduction in DVT after the protocol’s implementation was statistically significant (p = 0.009). Despite early aggressive prophylaxis, the incidence of postoperative EDH did not increase and compared favorably to the published literature.

At a high-volume tertiary center, an aggressive protocol for early VTE prophylaxis after spine surgery decreases VTE incidence without increasing morbidity 3).


Between December 2006 and January 2011, 209 patients undergoing spinal surgery (121 males, 88 females; average age: 64 yr), who also had ultrasonographic assessments of both legs before and after surgery, were prospectively assessed. A pneumatic sequential compression device and standard compression stockings were used for primary VTE prophylaxis. In Mie University Hospital protocol, pharmacological agents were not used for VTE prophylaxis after surgery. However, when a distal type DVT was found preoperatively, an anticoagulant medication was administered until 6 hours prior to surgery. After detection of DVTs, weekly ultrasonography assessed the DVT.

Twenty-three patients (11.0%) showed VTE in the spinal surgery perioperative period. Nine patients (4.3%) had VTE (PE with proximal DVT, 1 [0.5%]; distal DVT, 8 [3.8%]) before surgery. In the one case of asymptomatic PE with proximal DVT, an inferior vena cava filter was placed before surgery. Fourteen patients (6.7%) developed new-onset VTE (PE with proximal DVT, 2 [1.0%]; distal DVT, 12 [5.9%]) after spinal surgery. New-onset PE with proximal DVT occurred in 2 patients after surgery. Follow-up ultrasonographic assessment showed that the DVT disappeared completely in 85% (17/20) of patients with a distal type DVT during the perioperative period.

DVT assessment using ultrasonography is important for proper management of VTE during the perioperative period of spinal surgery, especially for high-risk patients, such as those with advanced age or neurological deficit. The institutional protocol for VTE using pneumatic sequential compression device and compression stockings is effective, although the administration of chemoprophylaxis should be considered for high-risk patients, such as those with spinal tumors and spinal trauma 4).

2011

Yu et al., separated 298 spinal patients who had different VTE risk factors into low-, medium- and high-risk groups for 22 cases, 48 cases and 228 cases respectively. Physical prevention measures such as thigh-length thromboembolic deterrent stockings (TEDS) and pneumatic sequential compression device (PSCD) were used in low- and medium-risk groups. In high-risk groups, low molecular weight heparin(LMWH) was applied in addition to physical prevention measures. Lower limb vascular doppler ultrasonography was used to monitor thrombosis pre- and postoperatively. Simultaneously the occurrences of epidural or wound hematoma, mucosal bleeding, thrombocytopenia caused by low molecular heparin and nerve damage caused by extradural hemorrhage were monitored.

Among the 298 cases of patients with spinal surgery, DVT occurred in 23 cases, the incidence of DVT was 7.7%. There were 0, 2 and 21 patients with positive findings of deep vein thrombosis on duplex ultrasonograph respectively in low-, medium- and high-risk groups. There was no case of PE. All DVT was thrombosis in calf which was distal to the knee. There was no clinical symptom of VTE. The DVT needed no therapy. The vein with thrombosis was recanalized 3 months after operation. No case caught epidural or wound hematoma, mucosal bleeding, thrombocytopenia caused by low molecular heparin or nerve damage caused by extradural hemorrhage.

Individual VTE prophylaxis was taken according to risk stratifications. No VTE of clinical value or no complications from prophylaxis happened. So our prophylaxis is effective and safe. But more prospective, case-control studies are needed to assess the efficacy and safety of VTE prophylaxis5).

1)

Mosenthal WP, Landy DC, Boyajian HH, Idowu OA, Shi LL, Ramos E, Lee MJ. Thromboprophylaxis in Spinal Surgery. Spine (Phila Pa 1976). 2017 Aug 17. doi: 10.1097/BRS.0000000000002379. [Epub ahead of print] PubMed PMID: 28820759.
2)

Bryson DJ, Uzoigwe CE, Braybrooke J. Thromboprophylaxis in spinal surgery: a survey. J Orthop Surg Res. 2012 Mar 29;7:14. doi: 10.1186/1749-799X-7-14. PubMed PMID: 22458927; PubMed Central PMCID: PMC3349591.
3)

Cox JB, Weaver KJ, Neal DW, Jacob RP, Hoh DJ. Decreased incidence of venous thromboembolism after spine surgery with early multimodal prophylaxis: Clinical article. J Neurosurg Spine. 2014 Oct;21(4):677-84. doi: 10.3171/2014.6.SPINE13447. PubMed PMID: 25105337.
4)

Akeda K, Matsunaga H, Imanishi T, Hasegawa M, Sakakibara T, Kasai Y, Sudo A. Prevalence and countermeasures for venous thromboembolic diseases associated with spinal surgery: a follow-up study of an institutional protocol in 209 patients. Spine (Phila Pa 1976). 2014 May 1;39(10):791-7. doi: 10.1097/BRS.0000000000000295. PubMed PMID: 24583727.
5)

Yu ZR, Li CD, Yi XD, Lin JR, Liu XY, Liu H, Lu HL. [Prevention for venous thromboembolism prophylaxis after spinal surgery]. Beijing Da Xue Xue Bao. 2011 Oct 18;43(5):661-5. Chinese. PubMed PMID: 22008671.

Update: Spine injury

Spine injury

Controversies

At this moment there is persistent controversy within the spinal trauma community, which can be grouped under 6 headings:

First of all there is still no unanimity on the role and timing of medical and surgical interventions for patients with associated neurologic injury.

Type and timing of surgical intervention in multiply injured patients.

In some common injury types like odontoid fractures and thoracolumbar burst fracture, there is wide variation in practice between operative versus nonoperative management without clear reasons.

The role of different surgical approaches and techniques in certain injury types are not clarified yet.

Methods of nonoperative management and care of elderly patients with concurrent complex disorders are also areas where there is no consensus1).

Types

Spinal cord injury

Whiplash-associated disorders

Pediatric spine injury

Cervical spine injury

Thoracolumbar spine fracture

Sacral fracture

Osteoporotic vertebral fracture

Spinal gunshot wound

Penetrating neck trauma


Traumatic spine injuries are often transferred to regional tertiary trauma centers from OSH and subsequently discharged from the trauma center’s emergency department (ED) suggesting secondary overtriage of such injuries.

A study to investigate interfacility transfers with spine injuries found high rate of secondary overtriage of neurologically intact patients with isolated spine injuries. Potential solutions include increasing spine coverage in community EDs, increasing direct communication between the OSH and spine specialist at the tertiary center, and utilization of teleradiology 2).

Complications

Hydrocephalus is a rare complication of traumatic spine injury. A literature review reflects the rare occurrence with cervical spine injury.

Dragojlovic et al present a case of traumatic injury to the lumbar spine from a gunshot wound, which caused communicating hydrocephalus. The patient sustained a gunshot wound to the lumbar spine and had an L4-5 laminectomy with exploration and removal of foreign bodies. At the time of surgery, the patient was found to have dense subarachnoid hemorrhage in the spinal column. He subsequently had intermittent headaches and altered mental status that resolved without intervention. The headaches worsened, so a computed tomography scan of the brain was obtained, which revealed hydrocephalus. A ventriculoperitoneal shunt was placed, and subsequent computed tomography scan of the brain showed reduced ventricle size. The patient returned to rehabilitation with complete resolution of hydrocephalus symptoms. Intrathecal hemorrhage with subsequent obstruction or decreased absorption of cerebrospinal fluid at the distal spinal cord was thought to lead to communicating hydrocephalus in this case of lumbar penetrating trauma. In patients with a history of hemorrhagic, traumatic spinal injury who subsequently experience headaches or altered mental status, hydrocephalus should be included in the differential diagnosis and adequately investigated 3).

Assessment

ATLS® algorithm and spine trauma assessment. In Step „A“ cervical spine (C-Spine) protection is indispensable. Every unconscious patient is stabilized by stiff-neck. Patients with signs of chest injury in step „B” and abdominal injury in step „C“, especially retroperitoneal are highly suspicious for thoracic (T-) and/or (L-) lumbar spine injury. Normal motor exam and reflexes do not rule out significant spine injury in the comatose patient. Abnormal neurologic exam is a sign for substantial spinal column injury including spinal cord injury (SCI). Log roll in step „E” is important to assess the dorsum of the cervical to the sacral spine and to look out for any signs of bruising, open wounds, tender points and to palpate the paravertebral tissue and posterior processus in search for distraction injury. Spine precautions should only be discontinued when patients gain back consciousness and are alert to communicate sufficiently on spinal discomfort or neurologic sensations before the spine is cleared 4).

Data on all patients with traumatic spine injuries admitted to the Alfred Hospital, Melbourne between May 1, 2009, and January 1, 2011, were collected:

There were 965 patients with traumatic spine injuries with 2,333 spine trauma levels. The general cohort showed a trimodal age distribution, male-to-female ratio of 2:2, motor vehicle accidents as the primary spine trauma mechanism, 47.7% patients with severe polytrauma as graded using the Injury Severity Score (ISS), 17.3% with traumatic brain injury (TBI), the majority of patients with one spine injury level, 7% neurological deficit rate, 12.8% spine trauma operative rate, and 5.2% mortality rate. Variables with statistical significance trending toward mortality were the elderly, motor vehicle occupants, severe ISS, TBI, C1-2 dissociations, and American Spinal Injury Association (ASIA) A, B, and C neurological grades. Variables with statistical significance trending toward the elderly were females; low falls; one spine injury level; type 2 odontoid fractures; subaxial cervical spine distraction injuries; ASIA A, B, and C neurological grades; and patients without neurological deficits. Of the general cohort, 50.3% of spine trauma survivors were discharged home, and 48.1% were discharged to rehabilitation facilities. This study provides baseline spine trauma epidemiological data. The trimodal age distribution of patients with traumatic spine injuries calls for further studies and intervention targeted toward the 46- to 55-year age group as this group represents the main providers of financial and social security. The study’s unique feature of delineating variables with statistical significance trending toward both mortality and the elderly also provides useful data to guide future research studies, benchmarking, public health policy, and efficient resource allocation for the management of spine trauma 5).

Outcome

There is no universally accepted outcome instrument available that is specifically designed or validated for spinal trauma patients, contributing to controversies related to the optimal treatment and evaluation of many types of spinal injuries. Therefore, the AOSpine Knowledge Forum Trauma aims to develop such an instrument using the International Classification of Functioning Disability and Health (ICF) as its basis.

Experts from the 5 AOSpine International world regions were asked to give their opinion on the relevance of a compilation of 143 ICF categories for spinal trauma patients on a 3-point scale: “not relevant,” “probably relevant,” or “definitely relevant.” The responses were analyzed using frequency analysis. Possible differences in responses between the 5 world regions were analyzed with the Fisher exact test and descriptive statistics.

Of the 895 invited AOSpine International members, 150 (16.8%) participated in this study. A total of 13 (9.1%) ICF categories were identified as definitely relevant by more than 80% of the participants. Most of these categories were related to the ICF component “activities and participation” (n = 8), followed by “body functions” (n = 4), and “body structures” (n = 1). Only some minor regional differences were observed in the pattern of answers.

More than 80% of an international group of health care professionals experienced in the clinical care of adult spinal trauma patients indicated 13 of 143 ICF categories as definitely relevant to measure outcomes after spinal trauma. This study creates an evidence base to define a core set of ICF categories for outcome measurement in adult spinal trauma patients 6).

Early independent risk factors predictive of suboptimal physical health status identified in a level 1 trauma center in polytrauma patients with spine injuries were tachycardia, hyperglycemia, multiple chronic medical comorbidities, and thoracic spine injuries. Early spine trauma risk factors were shown not to predict suboptimal mental health status outcomes 7).

References

1)

Oner C, Rajasekaran S, Chapman JR, Fehlings MG, Vaccaro AR, Schroeder GD, Sadiqi S, Harrop J. Spine Trauma-What Are the Current Controversies? J Orthop Trauma. 2017 Sep;31 Suppl 4:S1-S6. doi: 10.1097/BOT.0000000000000950. PubMed PMID: 28816869.
2)

Bible JE, Kadakia RJ, Kay HF, Zhang CE, Casimir GE, Devin CJ. How often are interfacility transfers of spine injury patients truly necessary? Spine J. 2014 Apr 14. pii: S1529-9430(14)00379-9. doi: 10.1016/j.spinee.2014.01.065. [Epub ahead of print] PubMed PMID: 24743061.
3)

Dragojlovic N, Stampas A, Kitagawa RS, Schmitt KM, Donovan W. Communicating Hydrocephalus Due to Traumatic Lumbar Spine Injury: Case Report and Literature Review. Am J Phys Med Rehabil. 2016 Jun 17. [Epub ahead of print] PubMed PMID: 27323322.
5)

Tee JW, Chan CH, Fitzgerald MC, Liew SM, Rosenfeld JV. Epidemiological trends of spine trauma: an Australian level 1 trauma centre study. Global Spine J. 2013 Jun;3(2):75-84. doi: 10.1055/s-0033-1337124. Epub 2013 Mar 19. PubMed PMID: 24436855; PubMed Central PMCID: PMC3854579.
6)

Oner FC, Sadiqi S, Lehr AM, Aarabi B, Dunn RN, Dvorak MF, Fehlings MG, Kandziora F, Post MW, Rajasekaran S, Vialle L, Vaccaro AR. Toward Developing a Specific Outcome Instrument for Spine Trauma: An Empirical Cross-sectional Multicenter ICF-Based Study by AOSpine Knowledge Forum Trauma. Spine (Phila Pa 1976). 2015 Sep 1;40(17):1371-1379. PubMed PMID: 26323025.
7)

Tee JW, Chan CH, Gruen RL, Fitzgerald MC, Liew SM, Cameron PA, Rosenfeld JV.Early predictors of health-related quality of life outcomes in polytrauma patients with spine injuries: a level 1 trauma center study. Global Spine J. 2014 Feb;4(1):21-32. doi: 10.1055/s-0033-1358617. Epub 2013 Nov 6. PubMed PMID: 24494178.

Update: Spinal cord injury treatment

Spinal cord injury treatment

Substantial heterogeneity in the patient population, their presentation and underlying pathophysiology has sparked debates along the care spectrum from initial assessment to definitive treatment.

In seeking a cure, these patients often undergo treatments that lack scientific and methodological rigor.

Ahuja et al. reviews spinal cord injury (SCI) management followed by a discussion of the salient controversies in the field. Current care practices modeled on the American Association of Neurological Surgeons/Congress of Neurological Surgeons joint section guidelines are highlighted including key recommendations regarding immobilization, avoidance of hypotension, early International Standards for Neurological Classification of SCI examination and intensive care unit treatment. From a diagnostic perspective, the evolving roles of CT, MRI, and leading-edge microstructural MRI techniques are discussed with descriptions of the relevant clinical literature for each. Controversies in management relevant to clinicians including the timing of surgical decompression, methylprednisolone administration, blood pressure augmentation, intraoperative electrophysiological monitoring, and the role of surgery in central cord syndrome and pediatric SCI are also covered in detail. Finally, the article concludes with a reflection on clinical trial design tailored to the heterogeneous population of individuals with SCI 1).

Cell therapy

Perfusion

Increased spinal cord perfusion and blood pressure goals have been recommended for spinal cord injury (SCI).

Treatment consists of restoration of CSF flow, typically via arachnoidolysis and syrinx decompression Research into treatments for spinal cord injuries includes controlled hypothermia and stem cells, though many treatments have not been studied thoroughly and very little new research has been implemented in standard care.

Treatment of spinal cord injuries starts with restraining the spine and controlling inflammation to prevent further damage. The actual treatment can vary widely depending on the location and extent of the injury.

Acute spinal cord injury (SCI) is commonly treated by elevating the mean arterial pressure (MAP). Other potential interventions include cerebrospinal fluid drainage (CSFD).

Both MAP elevation alone and CSFD alone led to only short-term improvement of SCBF. The combination of MAP elevation and CSFD significantly and sustainably improved SCBF and spinal cord perfusion pressure. Although laser Doppler flowmetry can provide flow measurements to a tissue depth of only 1.5 mm, these results may represent pattern of blood flow changes in the entire spinal cord after injury 2).

Lumbar cerebrospinal fluid drainage after spinal cord injury, as used in the pig study by Martirosyan et al would reduce intrathecal pressure at the injury site only if the spinal cord is not compressed against the surrounding dura. Unfortunately, in most patients with severe spinal cord injury, the spinal cord is compressed against the surrounding dura; therefore, drainage of cerebrospinal fluid from the lumbar region will not reduce intrathecal pressure at the injury site 3).

Unfortunately, no data correlate the severity of spinal cord injury, the degree of spinal cord swelling, and persistent CSF flow across an injured segment in the human spinal cord. The physiological observations in animals and humans alike indicate that CSF drainage and induced hypertension warrant further investigation as a potential treatment for acute spinal cord injury 4).

Rehabilitation

In many cases, spinal cord injuries require substantial physical therapy and rehabilitation, especially if the patient’s injury interferes with activities of daily life.

Pharmacological Therapy

Despite a degree of theoretical progress, there is a lack of effective drugs that are able to improve the motor function of patients following spinal cord injury (SCI) 5) 6) 7) 8).

see Methylprednisolone for Spinal cord injury.

Dexamethasone acetate (DA) produces neuroprotective effects by inhibiting lipid peroxidation and inflammation by reducing cytokine release and expression. However, its clinical application is limited by its hydrophobicity, low biocompatibility and numerous side effects when using large dosage. Therefore, improving DA’s water solubility, biocompatibility and reducing its side effects are important goals that will improve its clinical utility. The objective of this study is to use a biodegradable polymer as the delivery vehicle for DA to achieve the synergism between inhibiting lipid peroxidation and inflammation effects of the hydrophobic-loaded drugs and the amphipathic delivery vehicle. Wang et al., successfully prepared DA-loaded polymeric micelles (DA/MPEG-PCL micelles) with monodispersed and approximately 25 nm in diameter, and released DA over an extended period in vitro. Additionally, in the hemisection spinal cord injury (SCI) model, DA micelles were more effective in promoting hindlimb functional recover, reducing glial scar and cyst formation in injured site, decreasing neuron lose and promoting axon regeneration. Therefore, data suggest that DA/MPEG-PCL micelles have the potential to be applied clinically in SCI therapy 9).

Surgery

After traumatic spinal cord injury (TSCI), laminectomy does not improve intraspinal pressure (ISP), spinal cord perfusion pressure (SCPP) or the vascular pressure reactivity index (sPRx) at the injury site sufficiently because of dural compression.

21 patients with acute, severe TSCI had realignment of the fracture and surgical fixation; 11 had laminectomy (laminectomy group) and 10 had laminectomy and duroplasty (laminectomy + duroplasty group). Primary outcomes were MRI evidence of spinal cord decompression (increase in intradural space, cerebrospinal fluid around the injured cord) and spinal cord physiology (ISP, SCPP, sPRx). The laminectomy and laminectomy + duroplasty groups were well matched. Compared with the laminectomy group, the laminectomy + duroplasty group had greater increase in intradural space at the injury site and more effective decompression of the injured cord. In the laminectomy + duroplasty group, ISP was lower, SCPP higher and sPRx lower, i.e. improved vascular pressure reactivity, compared with the laminectomy group. Duroplasty caused cerebrospinal fluid leak that settled with lumbar drain in one patient and pseudomeningocele that resolved in five patients. We conclude that, after TSCI, laminectomy + duroplasty improves spinal cord radiological and physiological parameters more effectively than laminectomy 10).

References

1)

Ahuja CS, Schroeder GD, Vaccaro AR, Fehlings MG. Spinal Cord Injury-What Are the Controversies? J Orthop Trauma. 2017 Sep;31 Suppl 4:S7-S13. doi: 10.1097/BOT.0000000000000943. PubMed PMID: 28816870.
2)

Martirosyan NL, Kalani MY, Bichard WD, Baaj AA, Gonzalez LF, Preul MC, Theodore N. Cerebrospinal fluid drainage and induced hypertension improve spinal cord perfusion after acute spinal cord injury in pigs. Neurosurgery. 2015 Apr;76(4):461-9. doi: 10.1227/NEU.0000000000000638. PubMed PMID: 25621979.
3)

Papadopoulos MC. Letter: Intrathecal Pressure After Spinal Cord Injury. Neurosurgery. 2015 Sep;77(3):E500. doi: 10.1227/NEU.0000000000000862. PubMed PMID: 26110999.
4)

Martirosyan NL, Kalani MY, Theodore N. In Reply: Intrathecal Pressure After Spinal Cord Injury. Neurosurgery. 2015 Sep;77(3):E500-1. doi: 10.1227/NEU.0000000000000857. PubMed PMID: 26111000.
5)

Hu R, Zhou J, Luo C, et al. Glial scar and neuroregeneration: Histological, functional, and magnetic resonance imaging analysis in chronic spinal cord injury. J Neurosurg Spine. 2010;13:169–180. doi: 10.3171/2010.3.SPINE09190.
6)

Macias CA, Rosengart MR, Puyana JC, et al. The effects of trauma center care, admission volume, and surgical volume on paralysis after traumatic spinal cord injury. Ann Surg. 2009;249:10–17. doi: 10.1097/SLA.0b013e31818a1505.
7)

Samantaray S, Sribnick EA, Das A, et al. Neuroprotective efficacy of estrogen in experimental spinal cord injury in rats. Ann NY Acad Sci. 2010;1199:90–94. doi: 10.1111/j.1749-6632.2009.05357.x.
8)

Fu ES, Tummala RP. Neuroprotection in brain and spinal cord trauma. Curr Opin Anaesthesiol. 2005;18:181–187. doi: 10.1097/01.aco.0000162838.56344.88.
9)

Wang Y, Wu M, Gu L, Li X, He J, Zhou L, Tong A, Shi J, Zhu H, Xu J, Guo G. Effective improvement of the neuroprotective activity after spinal cord injury by synergistic effect of glucocorticoid with biodegradable amphipathic nanomicelles. Drug Deliv. 2017 Nov;24(1):391-401. doi: 10.1080/10717544.2016.1256003. PubMed PMID: 28165815.
10)

Phang I, Werndle MC, Saadoun S, Varsos GV, Czosnyka M, Zoumprouli A, Papadopoulos MC. Expansion Duroplasty Improves Intraspinal Pressure, Spinal Cord Perfusion Pressure and Vascular Pressure Reactivity Index in Patients with Traumatic Spinal Cord Injury. J Neurotrauma. 2015 Feb 23. [Epub ahead of print] PubMed PMID: 25705999.

Update: AOSpine subaxial cervical spine injury classification system

AOSpine subaxial cervical spine injury classification system

See: aospine_subaxial_cervical_spine_injury_classification_system.pdf

This project describes a morphology-based subaxial cervical spine injury classification system. Using the same approach as the AOSpine Thoracolumbar Classification System, the goal was to develop a comprehensive yet simple classification system with high intra- and interobserver reliability to be used for clinical and research purposes.

A subaxial cervical spine injury classification system was developed using a consensus process among clinical experts. All investigators were required to successfully grade 10 cases to demonstrate comprehension of the system before grading 30 additional cases on two occasions, 1 month apart. Kappa coefficients (κ) were calculated for intraobserver and interobserver reliability.

The classification system is based on three injury morphology types similar to the TL system: compression injuries (A), tension band injuries (B), and translational injuries (C), with additional descriptions for facet injuries, as well as patient-specific modifiers and neurologic status. Intraobserver and interobserver reliability was substantial for all injury subtypes (κ = 0.75 and 0.64, respectively).

The AOSpine subaxial cervical spine injury classification system demonstrated substantial reliability in this initial assessment, and could be a valuable tool for communication, patient care and for research purposes 1).


The AOSpine subaxial cervical spine injury classification system (using the four main injury types or at the sub-types level) allows a significantly better agreement than the Allen and Ferguson classification of subaxial cervical spine injury. The A&F scheme does not allow reliable communication between medical professionals 2).


see also Subaxial Injury Classification (SLIC).

Case series

2017

Aarabi et al. analyzed the relevant clinical, imaging, management, and American Spinal Injury Association (ASIA) impairment scale (AIS) grade conversion of 92 AIS grades A-C patients with cervical spine injury. We correlated morphology class with age, injury severity score (ISS), follow-up ASIA motor score (AMS), intramedullary lesion length (IMLL), and AIS grade conversion at 6 months after injury.

The mean age of patients was 39.3 years, 83 were men, and 69 were injured during an automobile accident or after a fall. The AOSpine class was A4 in 8, B2 in 5, B2A4 in 16, B3 in 19, and C in 44 patients. The mean ISS was 29.7 and AMS was 17.1. AIS grade was A in 48, B in 25, and C in 19 patients. Mean IMLL on postoperative magnetic resonance imaging was 72 mm: A4 = 68.1; B2A4 = 86.5; B2 = 59.3; B3 = 46.8; and C = 79.9. At a mean follow-up of 6 months, the mean AMS was 39.6. Compared to patients with class B3 injuries, those with class C injuries were significantly younger (P < 0.0001), had longer IMLL (P < 0.002), and were less likely to have AIS grade conversion to a better grade (P < 0.02).

The AOSpine subaxial cervical spine injury classification system successfully predicted injury severity (longer IMLL) and chances of neurologic recovery (AIS grade conversion) across different class subtypes 3).

2016

Silva et al., evaluated the new classification

Patients with subaxial cervical spine trauma (SCST) treated at the authors’ institution according to the Subaxial Cervical Spine Injury Classification system were included. Five different blinded researchers classified patients’ injuries according to the new AOSpine system using CT imaging at 2 different times (4-week interval between each assessment). Reliability was assessed using the kappa index (κ), while validity was inferred by comparing the classification obtained with the treatment performed.

Fifty-one patients were included: 31 underwent surgical treatment, and 20 were managed nonsurgically. Intraobserver agreement for subgroups ranged from 0.61 to 0.93, and interobserver agreement was 0.51 (first assessment) and 0.6 (second assessment). Intraobserver agreement for groups ranged from 0.66 to 0.95, and interobserver agreement was 0.52 (first assessment) and 0.63 (second assessment). The kappa index in all evaluations was 0.67 for Type A, 0.08 for Type B, and 0.68 for Type C injuries, and for the facet modifier it was 0.33 (F1), 0.4 (F2), 0.56 (F3), and 0.75 (F4). Complete agreement for all components was attained in 25 cases (49%) (19 Type A and 6 Type C), and for subgroups it was attained in 22 cases (43.1%) (16 Type A0 and 6 Type C). Type A0 injuries were treated conservatively or surgically according to their neurological status and ligamentous status. Type C injuries were treated surgically in almost all cases, except one.

While the general reliability of the newer AOSpine system for SCST was acceptable for group classification, significant limitations were identified for subgroups. Type B injuries were rarely diagnosed, and only mild (Type A0) and extreme severe (Type C) injuries had a high rate of interobserver agreement. Facet modifiers and intermediate injury patterns require better descriptions to improve their low agreement in cases of SCST 4).

References

1)

Vaccaro AR, Koerner JD, Radcliff KE, Oner FC, Reinhold M, Schnake KJ, Kandziora F, Fehlings MG, Dvorak MF, Aarabi B, Rajasekaran S, Schroeder GD, Kepler CK, Vialle LR. AOSpine subaxial cervical spine injury classification system. Eur Spine J. 2016 Jul;25(7):2173-84. doi: 10.1007/s00586-015-3831-3. Epub 2015 Feb 26. PubMed PMID: 25716661.
2)

Urrutia J, Zamora T, Campos M, Yurac R, Palma J, Mobarec S, Prada C. A comparative agreement evaluation of two subaxial cervical spine injury classification systems: the AOSpine and the Allen and Ferguson schemes. Eur Spine J. 2016 Jul;25(7):2185-92. doi: 10.1007/s00586-016-4498-0. Epub 2016 Mar 5. PubMed PMID: 26945747.
3)

Aarabi B, Oner C, Vaccaro AR, Schroeder GD, Akhtar-Danesh N. Application of AOSpine Subaxial Cervical Spine Injury Classification in Simple and Complex Cases. J Orthop Trauma. 2017 Sep;31 Suppl 4:S24-S32. doi: 10.1097/BOT.0000000000000944. PubMed PMID: 28816872.
4)

Silva OT, Sabba MF, Lira HI, Ghizoni E, Tedeschi H, Patel AA, Joaquim AF. Evaluation of the reliability and validity of the newer AOSpine subaxial cervical injury classification (C-3 to C-7). J Neurosurg Spine. 2016 Sep;25(3):303-8. doi: 10.3171/2016.2.SPINE151039. Epub 2016 Apr 22. PubMed PMID: 27104288.

Update: Thoracolumbar burst fracture

Thoracolumbar burst fracture

Epidemiology

Thoracolumbar spine fractures account for 90% of spinal fractures, with the thoracolumbar burst fracture. subtype corresponding to 20% of this total, with the majority occurring at the junctional area where mechanical load is maximal

(AOSpine Thoracolumbar Classification System Subtype A3 or A4).

Outcome

A thoracolumbar burst fracture is usually unstable and can cause neurological deficits and angular deformity.

Burst fractures entail the involvement of the middle column, and therefore, they are typically associated with bone fragment in the spinal canal, which may cause compression of the spinal cordconus medullariscauda equina, or a combination of these.

Fortunately, approximately half of the patients with thoracolumbar burst fractures are neurologically intact due to the wide canal diameter.

Treatment

Recent evidences have revealed that functional outcomes in the long term may be equivalent between operative and nonoperative management for neurologically intact thoracolumbar burst fractures. Nevertheless, consensus has not been met regarding the optimal treatment strategy for those with neurological deficits.

A review article summarizes the contemporary evidences to discuss the role of nonoperative management in the presence of neurological deficits and the optimal timing of decompression surgery for neurological recovery. In summary, although operative management is generally recommended for thoracolumbar fracture with significant neurological deficits, the evidence is weak, and nonoperative management can also be an option for those with solitary radicular symptoms. With regards to timing of operative management, high-quality studies comparing early and delayed intervention are lacking. Extrapolating from the evidence in cervical spine injury leads to an assumption that early intervention would also be beneficial for neurological recovery, but further studies are warranted to answer these questions 1).


The traditional surgical approach, when indicated, involves spinal fixation and spinal arthrodesis. Newer studies have brought the need for fusion associated with internal fixation into question. Not performing arthrodesis could reduce surgical time and intraoperative bleeding without affecting clinical and radiological outcomes.

Diniz Jet al. aimed to assess the effect of fusion, adjuvant to internal fixation, on surgically treated thoracolumbar burst fractures.

A search of the Medline and Cochrane Central Register of Controlled Trials databases was performed to identify randomized trials that compared the use and nonuse of arthrodesis in association with internal fixation for the treatment of thoracolumbar burst fractures. The search encompassed all data in these databases up to February 28, 2016.

Five randomized/quasi-randomized trials, which involved a total of 220 patients and an average follow-up time of 69.1 months, were included in this review. No significant difference between groups in the final scores of the visual analog pain scale or Low Back Outcome Scale was detected. Surgical time and blood loss were significantly lower in the group of patients who did not undergo fusion (p < 0.05). Among the evaluated radiological outcomes, greater mobility in the affected segment was found in the group of those who did not undergo fusion. No significant difference between groups in the degree of kyphosis correction, loss of kyphosis correction, or final angle of kyphosis was observed.

The data reviewed in this study suggest that the use of arthrodesis did not improve clinical outcomes, but it was associated with increased surgical time and higher intraoperative bleeding and did not promote significant improvement in radiological parameters 2).


The expandable cage group showed better results in loss of kyphosis correction, operation time, and amount of intraoperative blood loss 3).

Bracing

Bracing following operative stabilization of thoracolumbar fracture does not significantly improve stability, nor does it increase wound complications. Moreover, data suggests that post-operative bracing may not be a cost-effective measure 4).

In a systematic review in 2014 the evidence suggested that orthosis could not be necessary when TL burst fractures without neurologic deficit are treated conservatively. However, due to limitations related with number and size of the included studies, more RCTs with high quality are desirable for making recommendations with more certainty 5).

References

1)

Kato S, Murray JC, Kwon BK, Schroeder GD, Vaccaro AR, Fehlings MG. Does Surgical Intervention or Timing of Surgery Have an Effect on Neurological Recovery in the Setting of a Thoracolumbar Burst Fracture? J Orthop Trauma. 2017 Sep;31 Suppl 4:S38-S43. doi: 10.1097/BOT.0000000000000946. PubMed PMID: 28816874.
2)

Diniz JM, Botelho RV. Is fusion necessary for thoracolumbar burst fracture treated with spinal fixation? A systematic review and meta-analysis. J Neurosurg Spine. 2017 Aug 4:1-9. doi: 10.3171/2017.1.SPINE161014. [Epub ahead of print] PubMed PMID: 28777064.
3)

Lee GJ, Lee JK, Hur H, Jang JW, Kim TS, Kim SH. Comparison of Clinical and Radiologic Results between Expandable Cages and Titanium Mesh Cages for Thoracolumbar Burst Fracture. J Korean Neurosurg Soc. 2014 Mar;55(3):142-7. doi: 10.3340/jkns.2014.55.3.142. Epub 2014 Mar 31. PubMed PMID: 24851149; PubMed Central PMCID: PMC4024813.
4)

Piazza M, Sinha S, Agarwal P, Mallela A, Nayak N, Schuster J, Stein S. Post-operative bracing after pedicle screw fixation for thoracolumbar burst fractures: A cost-effectiveness study. J Clin Neurosci. 2017 Aug 8. pii: S0967-5868(17)30816-0. doi: 10.1016/j.jocn.2017.07.038. [Epub ahead of print] Review. PubMed PMID: 28800928.
5)

Alcalá-Cerra G, Paternina-Caicedo AJ, Díaz-Becerra C, Moscote-Salazar LR, Fernandes-Joaquim A. Orthosis for thoracolumbar burst fractures without neurologic deficit: A systematic review of prospective randomized controlled trials. J Craniovertebr Junction Spine. 2014 Jan;5(1):25-32. doi: 10.4103/0974-8237.135213. PubMed PMID: 25013344; PubMed Central PMCID: PMC4085907.