Category Archives: Vascular

PulseRider Aneurysm Neck Reconstruction Device

The PulseRider Aneurysm Neck Reconstruction Device is intended for use with embolic coils in the treatment of intracranial aneurysms originating on or near a vessel bifurcation.

In the early 1990’s, endovascular treatment using embolic coils for the treatment of intracranial aneurysms was established. Since then, there has been a significant body of peer-reviewed literature written by medical experts regarding the use, safety, and efficacy of these detachable embolic coils. With the publishing of the ISAT (Intracranial Subarachnoid Aneurysm Trial) trial data in 2005, which compared clinical outcomes of neurosurgical clipping and endovascular coiling, embolic coiling became the preferred method for treatment of the majority of unruptured intracranial aneurysms [ISAT 2003, Molyneux et al. 2005].

Since then, there has been a revolution in interventional neuroradiology which includes a shift toward catheter based procedures. Unfortunately, for a variety of reasons there are not always endovascular treatment options available to some patients with intracranial aneurysms, especially if the neck of the aneurysm is wide. Additionally there is a range of concerns relating to patient comorbidities, aneurysm geometry or the location of the lesion. Consequently there are many challenges, even today, when treating patients with such lesions. Hence there has been significant research in this arena to develop adjunctive devices to be used with embolic coils as well as sole therapy devices.


The PulseRider has an open cell frame. The unique frame configuration opens to conform to the vessel walls. The PulseRider is specifically designed to resolve the shortcomings of current endovascular devices by preserving luminal patency and hemodynamic flow through the parent vessel bifurcation, while minimizing exposed metal in order to encourage early endothelialization while securely retaining embolic agents within the aneurysm sac. The PulseRider is delivered through commercially available microcatheters using standard endovascular techniques. The implant is retrievable and may be repositioned by retracting it into the microcatheter at any time during or after deployment (prior to detachment). The implant is designed with an open frame to maintain luminal patency. It is deployed at the parent vessel bifurcation and across the aneurysm neck to provide a support framework, bridging the aneurysm neck while retaining embolic agents within the aneurysm. The PulseRider is electrolytically detached from the delivery wire.


The safety and probable benefit of the PulseRider (Pulsar Vascular, Los Gatos, California) for the treatment of broad-necked, bifurcation aneurysms was studied in the context of the prospective, nonrandomized, single arm clinical trial-the Adjunctive Neurovascular Support of Wide-neck aneurysm Embolization and Reconstruction (ANSWER) Trial.

Aneurysms treated with the PulseRider device among sites enrolling in the ANSWER trial were prospectively studied and the results are summarized. Aneurysms arising at either the carotid terminus or basilar apex that were relatively broad necked were considered candidates for inclusion into the ANSWER study.

Thirty-four patients were enrolled (29 female and 5 male) with a mean age of 60.9 years (27 basilar apex and 7 carotid terminus). Mean aneurysm height ranged from 2.4 to 15.9 mm with a mean neck size of 5.2 mm (range 2.3-11.6 mm). In all patients, the device was delivered and deployed. Immediate Raymond I or II occlusion was achieved in 82.4% and progressed to 87.9% at 6-month follow-up. A modified Rankin Score of 2 or less was seen in 94% of patients at 6 months.

The results from the ANSWER trial demonstrate that the PulseRider device is safe and offers probable benefit as for the treatment of bifurcation aneurysms arising at the basilar apex or carotid terminus. As such, it represents a useful addition to the armamentarium of the neuroendovascular specialist 1).

1)

Spiotta AM, Derdeyn CP, Tateshima S, Mocco J, Crowley RW, Liu KC, Jensen L, Ebersole K, Reeves A, Lopes DK, Hanel RA, Sauvageau E, Duckwiler G, Siddiqui A, Levy E, Puri A, Pride L, Novakovic R, Chaudry MI, Turner RD, Turk AS. Results of the ANSWER Trial Using the PulseRider for the Treatment of Broad-Necked, Bifurcation Aneurysms. Neurosurgery. 2017 Apr 25. doi: 10.1093/neuros/nyx085. [Epub ahead of print] PubMed PMID: 28449126.

Book: Color Atlas of Brainstem Surgery

Color Atlas of Brainstem Surgery

Color Atlas of Brainstem Surgery

List Price:$249.99

ADD TO SHOPPING CART

The highly complex specialty of brainstem surgery requires many years of study, a focus on precision, and a passionate dedication to excellence to prepare the neurosurgeon for navigating significant anatomic challenges. Although the brainstem is technically surgically accessible, its highly eloquent structure demands rigorous surgical decision-making. An in-depth understanding of brainstem and thalamic anatomy and the safe entry zones used to access critical areas of the brainstem is essential to traversing the brainstem safely and successfully.

This remarkable, one-of-a-kind atlas draws on the senior author’s decades of experience performing more than 1,000 surgeries on the brainstem, thalamus, basal ganglia, and surrounding areas. Its content is organized by anatomic region, enabling readers to study separate subdivisions of the brainstem, each of which has its own unique anatomic and surgical considerations. From cover to cover, the atlas provides readers with technical guidance on approach selection, the timing of surgery, and optimization of outcomes-elucidated by more than 1700 remarkable color illustrations, dissections, clinical images, and line drawings.

Key Highlights

  • Beautifully detailed, highly sophisticated brain slices and dissections by Kaan Yagmurlu, who trained under the internationally renowned neuroanatomist and neurosurgeon Albert Rhoton Jr.
  • Color illustrations clearly labeled with callouts and other indicators of foci of interest delineate multiple safe entry zones to the brainstem
  • More than 50 detailed patient cases highlight each patient’s history of previous neurological disorders, presenting symptoms, preoperative imaging, diagnosis, the planned surgical approach, patient positioning, intraoperative and postoperative imaging, and outcome
  • Seven animations and more than 50 surgical videos elucidate approach selection, anatomy, and surgical outcomes of thalamic region and brainstem lesions

This illuminating atlas provides insights into the complexities of the hallowed halls of the brainstem. Neurosurgeons and neurosurgical residents alike who glean knowledge from the clinical pearls throughout each section will no doubt become more adept surgeons, to the ultimate benefit of their patients.


Product Details

  • Published on: 2017-04-15
  • Original language: English
  • Dimensions: 12.30″ h x 1.30″ w x 9.40″ l,
  • Binding: Hardcover
  • 416 pages

Acute Ischemic Stroke: Medical, Endovascular, and Surgical Techniques

Acute Ischemic Stroke: Medical, Endovascular, and Surgical Techniques

Acute Ischemic Stroke: Medical, Endovascular, and Surgical Techniques

List Price: $249.00

ADD TO SHOPPING CART

This book approaches the topic of management of acute ischemic stroke in an interdisciplinary manner, explaining how best to utilize the methods currently available for medical, surgical, and endovascular care. After an opening section on basics such as pathophysiology, radiological assessment, and pathology, comprehensive and up-to-date information is provided on each of the available therapies, techniques, and practices. Special attention is paid to recent advances in neurointerventional and neurosurgical procedures, with clear description of important technical details.The book includes plentiful high-quality case illustrations and a wealth of practical information that will prove of value in emergency rooms, angiography suites, operating rooms, and intensive care units. It will aid not only neurologists, neurointerventionists, and neurosurgeons, but also all others who are involved in the management of acute ischemic stroke, from radiologists and emergency physicians to healthcare providers.


Product Details

  • Published on: 2017-03-23
  • Original language: English
  • Number of items: 1
  • Dimensions: 10.00″ h x .0″ w x 7.00″ l, .0 pounds
  • Binding: Hardcover
  • 270 pages

Book: Moyamoya Disease Explored Through RNF213: Genetics, Molecular Pathology, and Clinical Sciences

Moyamoya Disease Explored Through RNF213: Genetics, Molecular Pathology, and Clinical Sciences (Current Topics in Environmental Health and Preventive Medicine)

Moyamoya Disease Explored Through RNF213: Genetics, Molecular Pathology, and Clinical Sciences (Current Topics in Environmental Health and Preventive Medicine)

List Price: $159.00
This book presents the latest findings on biological, epidemiological, and clinical investigations of RNF213, which is thought to be involved in many biological processes and plays a key role in cerebro- and cardiovascular disease . By discussing the epidemiology and genetic epidemiology of the disease with a particular focus on the molecular function of RNF213, research using animal models, diagnosis, therapy and clinical management around the world, this work makes a valuable contribution to the study of the disease.
Moyamoya Disease Explored Through RNF213 is an indispensable resource for both beginning and experienced researchers, pediatricians, neurologists, and neurosurgeons who are seeking comprehensive information on adult and childhood stroke.

Product Details

  • Published on: 2017-03-22
  • Original language: English
  • Number of items: 1
  • Dimensions: 9.30″ h x .0″ w x 6.10″ l,
  • Binding: Hardcover
  • 185 pages

Akio Koizumi, Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University

Kazuhiro Nagata, Laboratory of Molecular and Cellular biology, Faculty of Life Sciences, Kyoto Sangyo University

Kiyohiro Houkin, Department of Neurosurgery, Graduate School of Medicine, Hokkaido University

Teiji Tominaga, Department of Neurosurgery, Tohoku University School of Medicine
Susumu Miyamoto, Department of Neurosurgery, Graduate School of Medicine, Kyoto University
Shigeo Kure, Department of Pediatrics, Tohoku University School of Medicine
Elizabeth Tournier‐Lasserve, CHU Paris‐GH St‐Louis Lariboisière F‐Widal ‐ Hôpital Lariboisière

Update: Molsidomine

Molsidomine is an orally active, long acting vasodilator. Molsidomine is metabolized in the liver to the active metabolite linsidomine. Linsidomine is an unstable compound that releases nitric oxide (NO) upon decay as the actual vasodilating compound.

Belongs to the drug class of sydnones . SIN-1A metabolite of Molsidomine has pharmacologically active group of NO, which by increasing levels of cGMP, decreases levels of intracellular calcium ions in smooth muscle cells. This effect leads to relaxation of smooth muscle vasculature, inhibits platelets aggregation and has indirect antiproliferative effect. In clinical observations no effect of tolerance to the drug was observed. Experimental data show additional mechanism of action of the drug: SIN-1C metabolites protects the reoxygenated cardiomyocyte from post-reperfusion damage. Indications for use of Molsidomine are: ischaemic heart disease, chronic heart failure and pulmonary hypertension. Effects of Molsidomine use in acute myocardial infarction and unstable angina were compared in clinical trials to effects of nitroglycerin use. Both drugs were found equally potent, but authors underline the fact of better Molsidomine tolerability comparing NTG, but longer serum half-time of Molsidomin effects that control of the treatment is worse. In clinical trials it was suggested that intravenous use of Molsidomine metabolite SIN-1 during PTCA procedures is more effective than use of isosorbide dinitrate in the same procedures. In other clinical trials molsidomin was found to produce beneficial effects in patients with heart failure due to ischaemic cardiomyopathy, dilatative cardiomyopathy, in essential hypertension, pulmonary artery hypertension in COPD patients and in congestive heart failure 1).

Ehlers et al. examined the effects of treatment with molsidomine with regard to decreasing the incidence of spasm-related delayed cerebral infarctions and improving clinical outcome in patients with SAH.

Seventy-four patients with spontaneous aneurysmal subarachnoid hemorrhage (SAH) were included in this post hoc analysis. Twenty-nine patients with SAH and proven cerebral vasospasm (CVS) received molsidomine in addition to oral or intravenous nimodipine. Control groups consisted of 25 SAH patients with proven vasospasm and 20 SAH patients without. These patients received nimodipine therapy alone. Cranial computed tomography (CCT) before and after treatment was analyzed for CVS-related infarcts. A Modified National Institutes of Health Stroke Scale (mNIHSS) and the modified Rankin Scale (mRS) were used to assess outcomes at a 3-month clinical follow-up.

Four of the 29 (13.8%) patients receiving molsidomine plus nimodipine and 22 of the 45 (48%) patients receiving nimodipine therapy alone developed vasospasm-associated brain infarcts (p < 0.01). Follow-up revealed a median mNIHSS score of 3.0 and a median mRS score of 2.5 in the molsidomine group compared with scores of 11.5 and 5.0, respectively, in the nimodipine group with CVS (p < 0.001). One patient in the molsidomine treatment group died, and 12 patients in the standard care group died (p < 0.01).

In this post hoc analysis, patients with CVS who were treated with intravenous molsidomine had a significant improvement in clinical outcome and less cerebral infarction. Molsidomine offers a promising therapeutic option in patients with severe SAH and CVS and should be assessed in a prospective study 2).


Durak et al., investigated the protective and therapeutic effects of molsidomine (MOL) in a rat model of whole brain radiotherapy (RT). Forty female rats were divided into five groups of eight: group 1, control; group 2, 15 Gy single dose RT (RT); group 3, 4 mg/kg MOL treated for 5 days (MOL); group 4, 4 mg/kg MOL for 5 days, 10 days after RT treatment (RT + MOL); group 5, 4 mg/kg MOL treatment for 5 days before RT treatment and for 5 days after RT treatment (MOL + RT). All rats were sacrificed on day 16. Neurodegenerative changes in the brain and tissue levels of oxidants and antioxidants were evaluated. The oxidative parameters were increased and antioxidant status was decreased in group RT compared to groups MOL + RT and RT + MOL. Histopathological examination showed that treatment with MOL after RT application and treatment with MOL before RT treatment decreased neuronal degeneration. No difference in neuronal appearance was found between groups RT + MOL and MOL + RT. MOL treatment protected the nervous system of rats and may be a treatment option for preventing RT induced neural injury 3)


1) Kmieć M, Ochmański W. [Molsidomine: importance in treatment of circulation disorders]. Przegl Lek. 1998;55(10):532-6. Review. Polish. PubMed PMID: 10224868.
2) Ehlert A, Schmidt C, Wölfer J, Manthei G, Jacobs AH, Brüning R, Heindel W, Ringelstein EB, Stummer W, Pluta RM, Hesselmann V. Molsidomine for the prevention of vasospasm-related delayed ischemic neurological deficits and delayed brain infarction and the improvement of clinical outcome after subarachnoid hemorrhage: a single-center clinical observational study. J Neurosurg. 2016 Jan;124(1):51-8. doi: 10.3171/2014.12.JNS13846. Epub 2015 Jul 10. PubMed PMID: 26162034.
3) Durak MA, Parlakpinar H, Polat A, Vardi N, Ekici K, Ucar M, Ozhan O, Yildiz A, Pasahan R. Protective and therapeutic effects of molsidomine on radiation induced neural injury in rats. Biotech Histochem. 2017 Feb 6:1-10. doi: 10.1080/10520295.2016.1271454. [Epub ahead of print] PubMed PMID: 28166419.

TODAY: THE BRITISH NEUROVASCULAR GROUP 8TH ANNUAL MEETING 2017

The British Neurovascular Group evolved from informal groupings
of interested clinicians and researchers within the Society of
British Neurological Surgeons.
They initially assembled under the banner of the Spontaneous
Intracerebral Haemorrhage Group and members conceived or
facilitated important British contributions to the care of patients
with neurovascular disease including the STICH trials.

President
Mr Stuart Ross
Consultant Neurosurgeon, Leeds General Infirmary, Leeds
Organising Committee

Mr Edward Jerome St George
Consultant Neurosurgeon, Southern General Hospital, Glasgow

Mr Nigel Suttner
Consultant Neurosurgeon, Queen Elizabeth University Hospital,
Glasgow

Invited Speakers
Jeremiah N. Johnson, MD, Dept. of Neurosurgery, UT Health
Science Centre San Antonio, San Antonio, Texas, USA

Mr. Mario Teo, Consultant Neurosurgeon, Bristol, UK

Topics
The hybrid endovascular neurosurgeon in practice
• Legislative and bureaucratic hurdles to combined endovascular/
neurosurgical training in the UK
• Moyamoya disease

PROGRAMME

THURSDAY 2ND FEBRUARY

13:10 Prevalence of cerebral vascular abnormalities in spontaneous subarachnoid haemorrhage I Phang

13:20 Is digital subtraction angiography (DSA) necessary in cases of perimesencephalic J Walker
subarachnoid haemorrhage (PMSAH) if CT angiogram (CTA) is negative – A systematic review Page 5
13:30 Associations between outcome and radiological screening practices for delayed cerebral ischaemia M Hollingworth

13:40 The role of semi-quantitative flow analysis with indocyanine green videoangiography in A Ghosh
cerebrovascular surgery

13:50 Risk factors of shunt dependent hydrocephalus in aneurysmal subarachnoid hemorrhage – M Blagia
Our experience and literature review

14:00 Guest Lecture J Johnson
The comprehensive (dual-trained) cerebrovascular neurosurgeon. Is one better than two?

15:10 Seminar – Dual training in neurovascular surgery H Patel, J Johnson

15:40 A single centre experience of intra operative angiogram use in arteriovenous malformation excision G Dobson

15:50 Does the availability of a microvascular neurosurgeon impact on the management and outcomes in K Ageymang
patients with an aneurysmal clot?

16:00 Surgical outcomes of very poor grade subarachnoid haemorrhage M Kommer

16:10 Sylvian fissure haematomas – A single unit experience R Chave-Cox

16:20 Cryptogenic subarachnoid haemorrhage – What’s new, MR? C Li

FRIDAY 3RD FEBRUARY

09:00 Guest lecture M Teo
Moyamoya disease – The last frontier for brain bypass surgery

09:30 Moyamoya disease in Denmark – A population based register study P Birkeland

09:40 EC-IC bypass – A single centre experience C Robson

09:50 Neurovascular simulator – A novel training aid A Sheikh

10:00 MSN – 24/7 Scottish coiling service D Seok-Lee

10:30 A neuroradiologist’s perspective on INR training M Puthuran

11:00 Guest lecture J Johnson
Neurovascular training – A United States perspective

11:15 Guest Lecture M Teo
USA neurovascular fellowship – A United Kingdom perspective

11:30 MISTIE III – Update on progress B Gregson

11:40 The SCIL-SAH Phase II study – Results and implications for future trials J Galea

11:50 In-hospital outcomes of aneurysmal SAH in the UK and Ireland H Patel

12:00 Treatment of poor grade subarachnoid haemorrhage trial – TOPSAT 2 – Update on progress B Gregson

Venous sinus stenting for idiopathic intracranial hypertension


Trials suggest that venous sinus stenting offers both comparable rates of efficacy – with improved papilledema in 97% of patients, resolved headache in 83%, and improved visual acuity in 78% .

Patients whose sight is threatened by medically refractory IIH must often consider invasive procedures to control their disease. Venous sinus stenting may offer equal efficacy and lower failure and complication rates than traditional surgical approaches such as optic nerve sheath fenestration and cerebrospinal fluid diversion 3).

Videos

Reviews

2017

A systematic review of the surgical treatment of IIH was carried out. Cochrane Library, MEDLINE and EMBASE databases were systematically searched from 1985 to 2014 to identify all relevant manuscripts written in English. Additional studies were identified by searching the references of retrieved papers and relative narrative reviews.

Forty-one (41) studies were included (36 case series and 5 case reports), totalling 728 patients. Three hundred forty-one patients were treated with optic nerve sheath fenestration (ONSF), 128 patients with lumboperitoneal shunting (LPS), 72 patients with ventriculoperitoneal shunting (VPS), 155 patients with venous sinus stenting and 32 patients with bariatric surgery. ONSF showed considerable efficacy in vision improvement, while CSF shunting had a superior headache response. Venous sinus stenting demonstrated satisfactory results in both vision and headache improvement along with the best complication profile and low relapse rate, but longer follow-up periods are needed. The complication rate of bariatric surgery was high when compared to other interventions and visual outcomes have not been reported adequately. ONSF had the lowest cost.

No surgical modality proved to be clearly superior to any other in IIH management. However, in certain contexts, a given approach appears more justified. Therefore, a treatment algorithm has been formulated, based on the extracted evidence of this review. The traditional treatment paradigm may need to be re-examined with sinus stenting as a first-line treatment modality 4).

2015

Kanagalingam et al., review the role of cerebral venous sinus stenting in the management of patients with medically refractory pseudotumor cerebri. Although long- term studies are needed in this field, the current reports indicate a favorable outcome for preventing vision loss and symptom control 5).

2013

In 2013, a review of the literature was performed which identified patients with IIH treated with venous sinus stenting. The procedural data and outcomes are presented. A total of 143 patients with IIH (87% women, mean age 41.4 years, mean body mass index 31.6 kg/m(2)) treated with venous sinus stenting were included in the analysis. Symptoms at initial presentation included headache (90%), papilledema (89%), visual changes (62%) and pulsatile tinnitus (48%). There was a technical success rate of 99% for the stent placement procedure with a total of nine complications (6%). At follow-up (mean 22.3 months), 88% of patients experienced improvement in headache, 97% demonstrated improvement or resolution of papilledema, 87% experienced improvement or resolution of visual symptoms and 93% had resolution of pulsatile tinnitus. In patients with IIH with focal venous sinus stenosis, endovascular stent placement across the stenotic sinus region represents an effective treatment strategy with a high technical success rate and decreased rate of complications compared with treatment modalities currently used 6).


Teleb et al., aimed to review all published cases and case series of dural sinus stenting for IIH, with analysis of patient presenting symptoms, objective findings (CSF pressures, papilledema, pressure gradients across dural sinuses), follow-up of objective findings, and complications.

A Medline search was performed to identify studies meeting pre-specified criteria of a case report or case series of patients treated with dural sinus stent placement for IIH. The manuscripts were reviewed and data was extracted.

A total of 22 studies were identified, of which 19 studies representing 207 patients met criteria and were included in the analysis. Only 3 major complications related to procedure were identified. Headaches resolved or improved in 81% of patients. Papilledema improved the (172/189) 90%. Sinus pressure decreased from an average of 30.3 to 15 mm Hg. Sinus pressure gradient decreased from 18.5 (n=185) to 3.2 mm Hg (n=172). Stenting had an overall symptom improvement rate of 87%.

Although all published case reports and case series are nonrandomized, the low complication and high symptom improvement rate make dural sinus stenting for IIH a potential alternative surgical treatment. Standardized patient selection and randomization trials or registry are warranted 7).

Case series

2017

Seventeen patients underwent dural venous sinus stenting (DVSS). Average pre- and post-intervention pressure gradients were 23.06 and 1.18 mmHg, respectively (p < 0.0001). Sixteen (94%) noted improvement in headache, fourteen (82%) had visual improvement and all (100%) patients had improved main symptom. Of 11 patients with optical coherence tomography, 8 showed decreased RNFL thickness and 3 remained stable; furthermore, these 11 patients had improved vision with improved papilledema in 8, lack of pre-existing papilledema in 2 and stable, mild edema in 1 patient.

This series of patients with dural sinus stenosis demonstrated improvement in vision and reduction in RNFL thickness. DVSS appears to be a useful treatment for IIH patients with dural sinus stenosis 8).

2016

Ten patients for whom medical therapy had failed were prospectively followed. Ophthalmological examinations were assessed, and patients with venous sinus stenosis on MR angiography proceeded to catheter angiography, venography with assessment of pressure gradient, and ICP monitoring. Patients with elevated ICP measurements and an elevated pressure gradient across the stenosis were treated with stent placement. RESULTS All patients had elevated venous pressure (mean 39.5 ± 14.9 mm Hg), an elevated gradient across the venous sinus stenosis (30.0 ± 13.2 mm Hg), and elevated ICP (42.2 ± 15.9 mm Hg). Following stent placement, all patients had resolution of the stenosis and gradient (1 ± 1 mm Hg). The ICP values showed an immediate decrease (to a mean of 17.0 ± 8.3 mm Hg), and further decreased overnight (to a mean of 8 ± 4.2 mm Hg). All patients had subjective and objective improvement, and all but one improved during follow-up (median 23.4 months; range 15.7-31.6 months). Two patients developed stent-adjacent stenosis; retreatment abolished the stenosis and gradient in both cases. Patients presenting with papilledema had resolution on follow-up funduscopic imaging and optical coherence tomography (OCT) and improvement on visual field testing. Patients presenting with optic atrophy had optic nerve thinning on follow-up OCT, but improved visual fields. CONCLUSIONS For selected patients with IIH and venous sinus stenosis with an elevated pressure gradient and elevated ICP, venous sinus stenting results in resolution of the venous pressure gradient, reduction in ICP, and functional, neurological, and ophthalmological improvement. As patients are at risk for stent-adjacent stenosis, further follow-up is necessary to determine long-term outcomes and gain an understanding of venous sinus stenosis as a primary or secondary pathological process behind elevated ICP 9).


El Mekabaty et al., retrospectively reviewed a prospectively maintained database spanning December 2011 to May 2015 of all patients with idiopathic intracranial hypertension who were screened for possible venous sinus stenting, including only patients who received a stent, noting symptomatic improvements, changes in opening lumbar puncture pressure, demographic characteristics, and any subsequent intervention after stent placement. Fisher’s exact test and logistic regression were used to test each of seven potential predictors for retreatment. RESULTS: There were eight revisions in 31 patients (25.8%). Among Caucasians, 8.0% required a revision compared with 100% of African-Americans (p<0.001). The c-index for race was 0.857. Body mass index (BMI) was also a significant predictor of revision (p=0.031): among class III obese patients the revision rate was 46.2% compared with 16.7% among class I and II obese patients and 0% among overweight to normal weight patients.

BMI was a significant predictor of revision, suggesting that higher BMI may have a higher risk of revision. The small number of African-Americans in the study makes interpretation of the practical significance of the revision rate in these patients uncertain. None of the other studied factors was statistically significant. 10).


A written informed consent approved by the Weill Cornell institutional review board was signed and obtained from the study participants. Thirty-seven consecutive patients with IIH and venous sinus stenosis who were treated with venous sinus stenting between Jan.2012-Jan.2016 were prospectively evaluated. Patients without pulsatile tinnitus were excluded. Tinnitus severity was categorized based on “Tinnitus Handicap Inventory” (THI) at pre-stent, day-0, 1-month, 3-month, 6-month, 12-month, 18-month and 2-year follow-up. Demographics, body-mass index (BMI), pre and post VSS trans-stenotic pressure gradient were documented. Statistical analysis performed using Pearson’s correlation, Chi-square analysis and Fischer’s exact test.

29 patients with a mean age of 29.5±8.5 years M:F = 1:28. Median (mean) THI pre and post stenting were: 4 (3.7) and 1 (1) respectively. Median time of tinnitus resolution post VSS was 0-days. There was significant improvement of THI (Δ Mean: 2.7 THI [95% CI: 2.3-3.1 THI], p<0.001) and transverse-distal sigmoid sinus gradient (Δ Mean: -15.3 mm Hg [95% CI: 12.7-18 mm Hg], p<0.001) post-stenting. Mean follow-up duration of 26.4±9.8 months (3-44 months). VSS was feasible in 100% patients with no procedural complications. Three-patients (10%) had recurrent sinus stenosis and tinnitus at mean follow-up of 12 months (6-30 months).

Venous sinus stenting is an effective treatment for pulsatile tinnitus in patients with IIH and venous sinus stenosis 11).

2013

Fields et al reviewed all cases of dural stents for IIH. Eligibility criteria included medically refractory IIH with documented papilledema and dural venous sinus stenosis of the dominant venous outflow system (gradient ≥10 mm Hg).

Fifteen cases (all women) of mean age 34 years were identified. All had failed medical therapy and six had failed surgical intervention. Technical success was achieved in all patients without major periprocedural complications. The mean preprocedural gradient across the venous stenosis was reduced from 24 mm Hg before the procedure to 4 mm Hg after the procedure. Headache resolved or improved in 10 patients. Papilledema resolved in all patients and visual acuity stabilized or improved in 14 patients. There were no instances of restenosis among the 14 patients with follow-up imaging.

In this small case series, dural sinus stenting for IIH was performed safely with a high degree of technical success and with excellent clinical outcomes. These results suggest that angioplasty and stenting for the treatment of medically refractory IIH in patients with dural sinus stenosis warrants further investigation as an alternative to LPS, VPS and ONSF 12).


1) , 4) Kalyvas AV, Hughes M, Koutsarnakis C, Moris D, Liakos F, Sakas DE, Stranjalis G, Fouyas I. Efficacy, complications and cost of surgical interventions for idiopathic intracranial hypertension: a systematic review of the literature. Acta Neurochir (Wien). 2017 Jan;159(1):33-49. doi: 10.1007/s00701-016-3010-2. Review. PubMed PMID: 27830325.
2) Dinkin MJ, Patsalides A. Venous Sinus Stenting for Idiopathic Intracranial Hypertension: Where Are We Now? Neurol Clin. 2017 Feb;35(1):59-81. doi: 10.1016/j.ncl.2016.08.006. Review. PubMed PMID: 27886896.
3) Chaudhry S, Bryant TK, Peeler CE. Venous sinus stenting in idiopathic intracranial hypertension: a safer surgical approach? Curr Opin Ophthalmol. 2016 Nov;27(6):481-485. Review. PubMed PMID: 27585210.
5) Kanagalingam S, Subramanian PS. Cerebral venous sinus stenting for pseudotumor cerebri: A review. Saudi J Ophthalmol. 2015 Jan-Mar;29(1):3-8. doi: 10.1016/j.sjopt.2014.09.007. Review. PubMed PMID: 25859134; PubMed Central PMCID: PMC4314570.
6) Puffer RC, Mustafa W, Lanzino G. Venous sinus stenting for idiopathic intracranial hypertension: a review of the literature. J Neurointerv Surg. 2013 Sep 1;5(5):483-6. doi: 10.1136/neurintsurg-2012-010468. Review. PubMed PMID: 22863980.
7) Teleb MS, Cziep ME, Lazzaro MA, Gheith A, Asif K, Remler B, Zaidat OO. Idiopathic Intracranial Hypertension. A Systematic Analysis of Transverse Sinus Stenting. Interv Neurol. 2013;2(3):132-143. PubMed PMID: 24999351; PubMed Central PMCID: PMC4080637.
8) Smith KA, Peterson JC, Arnold PM, Camarata PJ, Whittaker TJ, Abraham MG. A case series of dural venous sinus stenting in idiopathic intracranial hypertension: association of outcomes with optical coherence tomography. Int J Neurosci. 2017 Feb;127(2):145-153. PubMed PMID: 26863329.
9) Liu KC, Starke RM, Durst CR, Wang TR, Ding D, Crowley RW, Newman SA. Venous sinus stenting for reduction of intracranial pressure in IIH: a prospective pilot study. J Neurosurg. 2016 Dec 23:1-8. doi: 10.3171/2016.8.JNS16879. [Epub ahead of print] PubMed PMID: 28009240.
10) El Mekabaty A, Obuchowski NA, Luciano MG, John S, Chung CY, Moghekar A, Jones S, Hui FK. Predictors for venous sinus stent retreatment in patients with idiopathic intracranial hypertension. J Neurointerv Surg. 2016 Dec 13. pii: neurintsurg-2016-012803. doi: 10.1136/neurintsurg-2016-012803. [Epub ahead of print] PubMed PMID: 27965382.
11) Boddu S, Dinkin M, Suurna M, Hannsgen K, Bui X, Patsalides A. Resolution of Pulsatile Tinnitus after Venous Sinus Stenting in Patients with Idiopathic Intracranial Hypertension. PLoS One. 2016 Oct 21;11(10):e0164466. doi: 10.1371/journal.pone.0164466. PubMed PMID: 27768690; PubMed Central PMCID: PMC5074492.
12) Fields JD, Javedani PP, Falardeau J, Nesbit GM, Dogan A, Helseth EK, Liu KC, Barnwell SL, Petersen BD. Dural venous sinus angioplasty and stenting for the treatment of idiopathic intracranial hypertension. J Neurointerv Surg. 2013 Jan 1;5(1):62-8. doi: 10.1136/neurintsurg-2011-010156. PubMed PMID: 22146571.