Update: Thoracolumbar burst fracture

Thoracolumbar burst fracture

Epidemiology

Thoracolumbar spine fractures account for 90% of spinal fractures, with the thoracolumbar burst fracture. subtype corresponding to 20% of this total, with the majority occurring at the junctional area where mechanical load is maximal

(AOSpine Thoracolumbar Classification System Subtype A3 or A4).

Outcome

A thoracolumbar burst fracture is usually unstable and can cause neurological deficits and angular deformity.

Burst fractures entail the involvement of the middle column, and therefore, they are typically associated with bone fragment in the spinal canal, which may cause compression of the spinal cordconus medullariscauda equina, or a combination of these.

Fortunately, approximately half of the patients with thoracolumbar burst fractures are neurologically intact due to the wide canal diameter.

Treatment

Recent evidences have revealed that functional outcomes in the long term may be equivalent between operative and nonoperative management for neurologically intact thoracolumbar burst fractures. Nevertheless, consensus has not been met regarding the optimal treatment strategy for those with neurological deficits.

A review article summarizes the contemporary evidences to discuss the role of nonoperative management in the presence of neurological deficits and the optimal timing of decompression surgery for neurological recovery. In summary, although operative management is generally recommended for thoracolumbar fracture with significant neurological deficits, the evidence is weak, and nonoperative management can also be an option for those with solitary radicular symptoms. With regards to timing of operative management, high-quality studies comparing early and delayed intervention are lacking. Extrapolating from the evidence in cervical spine injury leads to an assumption that early intervention would also be beneficial for neurological recovery, but further studies are warranted to answer these questions 1).


The traditional surgical approach, when indicated, involves spinal fixation and spinal arthrodesis. Newer studies have brought the need for fusion associated with internal fixation into question. Not performing arthrodesis could reduce surgical time and intraoperative bleeding without affecting clinical and radiological outcomes.

Diniz Jet al. aimed to assess the effect of fusion, adjuvant to internal fixation, on surgically treated thoracolumbar burst fractures.

A search of the Medline and Cochrane Central Register of Controlled Trials databases was performed to identify randomized trials that compared the use and nonuse of arthrodesis in association with internal fixation for the treatment of thoracolumbar burst fractures. The search encompassed all data in these databases up to February 28, 2016.

Five randomized/quasi-randomized trials, which involved a total of 220 patients and an average follow-up time of 69.1 months, were included in this review. No significant difference between groups in the final scores of the visual analog pain scale or Low Back Outcome Scale was detected. Surgical time and blood loss were significantly lower in the group of patients who did not undergo fusion (p < 0.05). Among the evaluated radiological outcomes, greater mobility in the affected segment was found in the group of those who did not undergo fusion. No significant difference between groups in the degree of kyphosis correction, loss of kyphosis correction, or final angle of kyphosis was observed.

The data reviewed in this study suggest that the use of arthrodesis did not improve clinical outcomes, but it was associated with increased surgical time and higher intraoperative bleeding and did not promote significant improvement in radiological parameters 2).


The expandable cage group showed better results in loss of kyphosis correction, operation time, and amount of intraoperative blood loss 3).

Bracing

Bracing following operative stabilization of thoracolumbar fracture does not significantly improve stability, nor does it increase wound complications. Moreover, data suggests that post-operative bracing may not be a cost-effective measure 4).

In a systematic review in 2014 the evidence suggested that orthosis could not be necessary when TL burst fractures without neurologic deficit are treated conservatively. However, due to limitations related with number and size of the included studies, more RCTs with high quality are desirable for making recommendations with more certainty 5).

References

1)

Kato S, Murray JC, Kwon BK, Schroeder GD, Vaccaro AR, Fehlings MG. Does Surgical Intervention or Timing of Surgery Have an Effect on Neurological Recovery in the Setting of a Thoracolumbar Burst Fracture? J Orthop Trauma. 2017 Sep;31 Suppl 4:S38-S43. doi: 10.1097/BOT.0000000000000946. PubMed PMID: 28816874.
2)

Diniz JM, Botelho RV. Is fusion necessary for thoracolumbar burst fracture treated with spinal fixation? A systematic review and meta-analysis. J Neurosurg Spine. 2017 Aug 4:1-9. doi: 10.3171/2017.1.SPINE161014. [Epub ahead of print] PubMed PMID: 28777064.
3)

Lee GJ, Lee JK, Hur H, Jang JW, Kim TS, Kim SH. Comparison of Clinical and Radiologic Results between Expandable Cages and Titanium Mesh Cages for Thoracolumbar Burst Fracture. J Korean Neurosurg Soc. 2014 Mar;55(3):142-7. doi: 10.3340/jkns.2014.55.3.142. Epub 2014 Mar 31. PubMed PMID: 24851149; PubMed Central PMCID: PMC4024813.
4)

Piazza M, Sinha S, Agarwal P, Mallela A, Nayak N, Schuster J, Stein S. Post-operative bracing after pedicle screw fixation for thoracolumbar burst fractures: A cost-effectiveness study. J Clin Neurosci. 2017 Aug 8. pii: S0967-5868(17)30816-0. doi: 10.1016/j.jocn.2017.07.038. [Epub ahead of print] Review. PubMed PMID: 28800928.
5)

Alcalá-Cerra G, Paternina-Caicedo AJ, Díaz-Becerra C, Moscote-Salazar LR, Fernandes-Joaquim A. Orthosis for thoracolumbar burst fractures without neurologic deficit: A systematic review of prospective randomized controlled trials. J Craniovertebr Junction Spine. 2014 Jan;5(1):25-32. doi: 10.4103/0974-8237.135213. PubMed PMID: 25013344; PubMed Central PMCID: PMC4085907.

Leave a Reply