Update: NeuroVR

CAE Healthcare NeuroVR Surgical Simulator from CAE Healthcare on Vimeo.

https://caehealthcare.com/surgical-simulation/neurovr


Simulation technology identifies neurosurgical residency applicants with differing levels of technical ability. These results provide information for studies being developed for longitudinal studies on the acquisition, development, and maintenance of psychomotor skills. Technical abilities customized training programs that maximize individual resident bimanual psychomotor training dependant on continuously updated and validated metrics from virtual reality simulation studies should be explored 1).


“Experts” display significantly more automaticity when operating on identical simulated tumors separated by a series of different tumors using the NeuroVR platform. These results support the Fitts and Posner model of motor learning and are consistent with the concept that automaticity improves after completing residency training. The potential educational application of the findings is outlined related to neurosurgical resident training 2).


Ultrasonic aspirator force application was continually assessed during resection of simulated brain tumors by neurosurgeons, residents, and medical students. The participants performed simulated resections of 18 simulated brain tumors with different visual and haptic characteristics. The raw data, namely, coordinates of the instrument tip as well as contact force values, were collected by the simulator. To provide a visual and qualitative spatial analysis of forces, the authors created a graph, called a force pyramid, representing force sum along the z-coordinate for different xy coordinates of the tool tip.

Sixteen neurosurgeons, 15 residents, and 84 medical students participated in the study. Neurosurgeon, resident and medical student groups displayed easily distinguishable 3D “force pyramid fingerprints.” Neurosurgeons had the lowest force pyramids, indicating application of the lowest forces, followed by resident and medical student groups. Handedness, ergonomics, and visual and haptic tumor characteristics resulted in distinct well-defined 3D force pyramid patterns.

Force pyramid fingerprints provide 3D spatial assessment displays of instrument force application during simulated tumor resection. Neurosurgeon force utilization and ergonomic data form a basis for understanding and modulating resident force application and improving patient safety during tumor resection 3).

1)

Winkler-Schwartz A, Bajunaid K, Mullah MA, Marwa I, Alotaibi FE, Fares J, Baggiani M, Azarnoush H, Zharni GA, Christie S, Sabbagh AJ, Werthner P, Del Maestro RF. Bimanual Psychomotor Performance in Neurosurgical Resident Applicants Assessed Using NeuroTouch, a Virtual Reality Simulator. J Surg Educ. 2016 Nov – Dec;73(6):942-953. doi: 10.1016/j.jsurg.2016.04.013. Epub 2016 Jul 7. PubMed PMID: 27395397.
2)

Bugdadi A, Sawaya R, Olwi D, Al-Zhrani G, Azarnoush H, Sabbagh AJ, Alsideiri G, Bajunaid K, Alotaibi FE, Winkler-Schwartz A, Del Maestro R. Automaticity of Force Application During Simulated Brain Tumor Resection: Testing the Fitts and Posner Model. J Surg Educ. 2017 Jul 3. pii: S1931-7204(17)30114-9. doi: 10.1016/j.jsurg.2017.06.018. [Epub ahead of print] PubMed PMID: 28684100.
3)

Azarnoush H, Siar S, Sawaya R, Zhrani GA, Winkler-Schwartz A, Alotaibi FE, Bugdadi A, Bajunaid K, Marwa I, Sabbagh AJ, Del Maestro RF. The force pyramid: a spatial analysis of force application during virtual reality brain tumor resection. J Neurosurg. 2017 Jul;127(1):171-181. doi: 10.3171/2016.7.JNS16322. Epub 2016 Sep 30. PubMed PMID: 27689458.

Leave a Reply